PENERAPAN ALGORITMA NAIVE BAYES UNTUK KLASIFIKASI PENERIMA BEASISWA PRESTASI

Penulis

  • Mulyadi Mulyadi

DOI:

https://doi.org/10.51998/jsi.v5i2.247

Abstrak

Abstract - Scholarship is supporting mean for students in college education. With the scholarship students can still continue their education until they complete their studies. This is in accordance with Act 1945 section 31 (1) that every citizen has the right to get education. Based on the article, of course education providers must help so that every student can enjoy education by providing scholarships to eligible. In deciding awardees sometime there are some errors such as lack of proper grantee selection process and the length of the grantee must fit the criteria and requirements of awardees. In this research, data mining modeling is using Naive Bayes algorithm to get the rules in selecting scholarship. Furthermore, the application of modeling results obtained Naive Bayes algorithm is used for classification of awardees. The data used are primary data that dataset scholarship at the University of BSI. From the results of model testing are done, the value of high accuracy for the classification of awardees with a value of 100% accuracy and AUC 1. Thus the application of Naive Bayes algorithm can be used as an alternative decision-making in the assessment of awardee. Intisari - Beasiswa adalah sarana penunjang untuk mahasiswa dalam mengenyam pendidikan perguruan tinggi. Dengan adanya beasiswa mahasiswa tetap bisa melanjutkan pendidikanya hingga selesai masa studinya. Hal ini sesuai dengan Undang-Undang 1945 pasal 31 (1) bahwa tiap-tiap warga negara berhak mendapatkan pengajaran. Berdasarkan pada pasal tersebut, tentu penyelenggara pendidikan harus membantu agar setiap mahasiswa dapat menikmati pendidikan dengan memberikan beasiswa kepada yang berhak menerima. Dalam penentu penerima beasiswa sering sekali terjadi kesalahan seperti penerima beasiswa yang kurang tepat dan lamanya proses seleksi penerima beasiswa yang harus sesuai kriteria dan syarat penerima beasiswa. Dalam penelitian ini dilakukan pemodelan data mining dengan menggunakan algoritma Naive Bayes untuk mendapatkan rule dalam penentuan beasiswa. Selanjutnya hasil penerapan pemodelan algoritma Naive Bayes yang didapat digunakan untuk klasifikasi penerima beasiswa. Data yang digunakan merupakan data primer yaitu dataset beasiswa pada Universitas BSI. Dari hasil pengujian model yang dilakukan, diperoleh nilai akurasi yang tinggi untuk klasifikasi penerima beasiswa dengan nilai akurasi 100% dan AUC 1. Dengan demikian penerapan algorima Naive Bayes dapat dijadikan alternatif pengambilan keputusan dalam penilaian penerimaan beasiswa.

Unduhan

Data unduhan belum tersedia.

Diterbitkan

2018-05-15